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and 

Norman J. Mckod, Fl ight  Research Center 

ABSTRACT 

Data based on about 5,000 overpressure measurements are  presented t o  
i l l u s t r a t e  atmospheric induced sonic boom signature variations for  supersonic 
a i r c r a f t  varying i n  gross weight from about 20,000 t o  450,000 pounds and from 
about 60 f t .  t o  185 ft. i n  length, respectively. 
several  special  f l i g h t  t e s t  experiments performed t o  define quant i ta t ively 
some of these atmospheric effects .  

Descriptions are included of 

The experience derived from several f l ight test programs regarding sonic 
boom signature var ia t ions has been s m a r i z e d .  Variations were noted t o  occur 
i n  the peak overpressure, t h e  impulse function, the t i m e  duration, end the  bow 
wave rise time. 
That portion of the atmosphere below about 2,000 ft i s  shown t o  be most 
i n f luen t i a l  although i n  some cases the higher portions may also be important. 
Ai rcraf t  motions, i n  the form of perturbations about the normal f l ight track, 
are shown not t o  contribute s ignif icant ly  t o  observed sonic boom signature 
var ia t ions at the ground. 

Such variations are noted t o  b e  induced by the atmosphere. 

INTRODUCTION 

It i s  a matter of record t h a t  substantial  var ia t ions occur i n  sonic boom 
signature shapes (See r e f s .  1, 2, and 3 .) . 
quant i t ies  as the peak overpressure, the  time duration, impulse, e tc .  Such 
var ia t ions are thought t o  be largely due t o  atmospheric and weather e f f ec t s  
although the  exact cause and effect  re la t ionship has not been def in i te ly  
established up t o  t h i s  time. 
recent sonic boom measurement resul ts  which i l l u s t r a t e  the nature of the  
atmospheric e f fec ts  problem and which define quant i ta t ively some of these 
e f fec ts .  

Tnese variations involve such 

The purpose of t h i s  paper i s  t o  present some 

Figure 1 contains examples of wave shapes observed for three d i f fe ren t  
types of a i r c ra f t .  A t  the l e f t  of the f igure are  tracings of measured waves 
f o r  t he  F-104 a i r c ra f t  for  which the t i m e  duration i s  about .10 of a second. 
It is seen tinat t i e  waves vary $rum aiiarpiy peaked t o  gentiy rounaea. 
signature t racings are shown at the r igh t  side of the figure for  the  B-58 and 
the  )[B-70, respectively.  

i5imiiar 

The B-58 signatures are  roughly .20 of a second i n  
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duration and those of the  XB-70 are approximately .3O of a second i n  duration. 
The main differences between waves for a given a i r c r a f t  are noted t o  occur at 
the  times of the rapid compressions. 
generally associated with the sharply peaked waves. 

The la rges t  overpressure values are 

NATURE OF SIGNATURE S W E  VARIATIONS 

I n  the following discussions, reference w i l l  be m a d e  t o  var ia t ions i n  
those quant i t ies  which are defined i n  figur? 2. 
example tracing of an N-wave signature. The quant i t ies  peak posi t ive over- 
pressure Ap, the posit ive impulse I, the  t o t a l  time duration of t he  wave A t ,  
and the r i se  time t , are i l l u s t r a t ed .  Rise time always refers t o  the  bow 
wave and i s  usually defined as the elapsed t i m e  between the onset of pressure 
and the  occurrence of i t s  m a x i m u m  value (See ref. 4.). 

Shawn i n  f igure 2 i s  an 

There has been considerable discussion about the frequency response 
requirements of measuring equipment and whether. differences i n  frequency response 
would markedly change the observed pat terns  of signature var ia t ion.  
t o  provide some information i n  t h i s  regard, F'M magnetic tape records were 
processed by playback through a series of l o w  pass filters. Figure 3 contains 
examples of traced wave forms resu l t ing  from playback of one par t icu lar  record 
through various f i l t e r s  varying i n  band width from about. 5,000 Hz down t o  
about 200 Hz. 
width systems noticeably a f f ec t  the wave shape par t icu lar ly  with regard t o  the  
peak overpressure and r i s e  t i m e .  
indicated i n  figure 3 t o  provide data f o r  the  histograms of figure 4. 

I n  order 

For the case i l l u s t r a t ed ,  it i s  seen t h a t  the  narrower band 

About 200 data records were processed as 

The data of figure 4 r e l a t e  t o  B-58 flights at  an a l t i t u d e  of about 31,000 
ft.  and a Mach number of 1.5.  
as a function of the overpressure values i n  histogram form f o r  the four 
d i f fe ren t  f i l t e r  bandwidths of f igure 3 .  
var ie ty  of wave form shapes on the or ig ina l  records such as those illustrated 
i n  f igure 1. 
do not vary markedly as a function of f i l ter  band width. 
a general sh i f t  t o  lower peak overpressure values as f i l t e r  band width i s  
reduced. The point can be m a d e  t h a t  the average peak overpressure values 
obtained f o r  the smaller f i l t e r  band width are more nearly i n  agreement with 
the calculated values than are those obtained w i t h  the  la rger  f i l ter  band 
widths.  
frequency responses are essent ia l ly  .O2-5,OOO Hz and thus the e f f ec t s  noted 
i n  f igures  3 and 4 w i l l  not apply. 

I n  the f igure the  number of events i s  plot ted 

The data of figure 4 relate t o  a 

It can be seen from the  inspection of figure 4 t h a t  the histograms 
There is ,  however, 

For all the  data subsequently presented i n  t h i s  paper the instrument 

Shown i n  f i gu re  5 are  probabilit; p lo t s  of the r a t i o s  of measured t o  
calculated overpressure for  the B-58 and XS-70 a i r c ra f t .  
probabi l i ty  of equalling or  exceeding a given abscissa value. 
data  are  included. 
points fo r  the B-58 were obtained from measurements of a 7,000 f t .  l i nea r  
microphone array, whereas the c i r c l e  B-58 data points were obtained for  a 
s m a l l  cruciform microphone array having dimensions of 200 ft. 
noted t h a t  the data would f i t  on a straight l i n e  if the var ia t ion  corresponded 

The ordinate i s  the 
Three sets of 

The square data points f o r  t h e  XB-70 and the  t r iangle  data 

It should be 

. 
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t o  a normal d is t r ibu t ion .  
va r i ab i l i t y  of t h e  data, a v e r t i c a l  l i n e  indicat ing no va r i ab i l i t y .  
exception of the highest and lowest valued points  all three sets of data 
generally follow a normal dis t r ibut ion l i n e  and the v a r i a b i l i t y  i s  about the  
same i n  each case. These results are similar t o  those obtained i n  other  
programs as, fo r  instance, i n  references 1 and 2, and the  implication i s  
that t h e  type and s i ze  of the airplane are not s ign i f icant  f ac to r s  regarding 
var iab i l i ty .  

The slope of t h i s  l i n e  would indicate  t h e  amount of 
With the 

.41tholq& no data sr, the  pcsi t ive ixpdse P a c t i o n  of the waves are 
included i n  t h i s  paper, the point can be made tha t  the  same general t rends 
exist as fo r  the overpressure data of figure 5. 
the v a r i a b i l i t y  i s  generally less for t h e  impulse function fo r  a given set of 
f l ight  and atmospheric conditions than f o r  t h e  overpressure function. 

The only exception i s  t h a t  

Some var ia t ions  i n  the sonic boom signature t i m e  durations which are 
important f o r  s t ruc tu ra l  responses have been observed. 
i l l u s t r a t e  these latter var ia t ions f o r  the  B-58 a i r c r a f t  f o r  two d i f f e ren t  
f l i g h t  conditions. 
f ixed locat ion f o r  approximately 50 flights over a period of about three,weeks. 
The h is togrms at  the  top of t he  figure are f o r  an overhead f l i g h t  track, f o r  
an airplane a l t i t u d e  of 31,000 ft . ,  and fo r  aMach number of 1.5. The h is to-  
gram a t  the bottom of the f igure r e l a t e s  t o  a f l i g h t  t rack  f ive  miles d i s t an t  
from the measuring s t a t ion  and f o r  an airplane a l t i t u d e  of 43,000 f ' t .  and a 
Mach number of 1.65. It can be s e e n t h a t  t he  t i m e  periods are longer f o r  the 
off the t r a c k  condition but t ha t  va r i ab i l i t y  does exist i n  the durations of 
the waves at  both locat ions.  This va r i ab i l i t y  i s  probably due t o  differences 
i n  the propagation rates of the bow and t a i l  waves which t r ave l  along somewhat 
d i f f e ren t  r ay  paths from the a i r c r a f t  t o  the ground. 

The data of f igure  6 

Results are based on about 200 data points measured at  a 

Also of i n t e r e s t  i s  the variation i n  bow wave rise time as defined i n  
f igure  2, since it i s  believed t h a t  t h i s  quantity i s  important from a sub- 
j ec t ive  reaction standpoint. The data of the histograms of f igure 7 have been 
normalized on the horizontal scale  t o  ind ica te  the rise t i m e  per unit over- 
pressure. These data are for  a B-58 aircraft f o r  an altitude of approximately 
31,000 f ' t .  and a Mach number of 1.5 for an overhead f l i g h t  condition. The two 
histograms of the f igure relate t o  the same measured data but  result from 
d i f f e ren t  in te rpre ta t ions  of t h a t  data. 
l i n e s  i s  based on the  r ise t i m e  def ini t ion of figure 2. 
h i s togam on the other hand i s  based on the  determination of the  Ap values 
associated with the first peak i n  the wave even though t h a t  may not be the 
highest  peak. 
subject ive evaluation whereas the def ini t ion of f igure 2 i s  a commonly accepted 
one. I n  e i the r  case it can be seen t h a t  considerable var ia t ions i n  r ise 
times axe encountered regardless of the  manner i n  which rise time i s  defined. 
It i s  s igni f icant  t o  note that rise times of less than a milli-second are 
commonly encountered fo r  the i n i t i a l  peak of the wave. 

For instance, t he  histogram of so l id  
The dashed l i n e  

"his latter definit ion may be the more appropriate one f o r  
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PROPAGATION ST[IDIES I N  THE IxlwER AWOSPHEIIE 

Previous studies of atmospheric e f fec ts  on sonic boom signatures have 
suggested that  the lower layers  of th,e atmosphere exert  the  greatest influence 
(See r e f .  3 .  ) . 
effective i n  dis tor t ing the sonic boom signatures, several special  experiments 
have been performed by NASA and USAF personnel. 
conducted at the NASA Wallops Stat ion and me i l l u s t r a t e d  schematically i n  
f igures  8 and 9. 
a l i n e a r  microphone array on the ground and extending about 1,500 f t . ,  i n  
combination with a ver t icd l  array on an instrumented tower extending t o  about 
250 ft. above the ground surface. 
a l t i t ude  of 40,000 ft., and at  aMach nmber of 1.5 fo r  a var ie ty  of weather 
conditions. The objective of the  studies w a s  t o  correlate  the sonic boom 
measurements with the extensive meteorological data obtained on the instrumented 
tower. 

I n  order t o  b e t t e r  define the  region of the atmosphere most 

The first two of these were 

F l igh ts  were m a d e  over an instrumented range consisting of 

The generating a i r c r a f t  w a s  flown at an 

I n  s i tuat ions where wave form dis tor t ion  w a s  noted t o  exist, it w a s  found 
t h a t  similar wave shapes were measured both at  the ground surface and on the 
instrumented tower. A par t icu lar ly  in te res t ing  and s ignif icant  result of 
these studies i s  i l l u s t r a t e d  by the wave form tracings of figure 8 which 
suggest t h a t  similar types of d i s tor t ions  ex i s t  at  points along given ray 
paths. 
s ta t ion  on the tower t o  the ground and also on a re f lec ted  path from the  
ground back up t o  a s ta t ion on the tower. 

Such a result w a s  obtained along a ray path extending from a measuring 

"his leads t o  the conclusion t h a t  for  these par t icu lar  t e s t s  the 250 f t .  
layer  of t he  atmosphere near the  surface of the grouna did not appreciably 
affect  the signature shapes. Thus, correlat ion studies involving only the  
lower surface layers  would probably not produce conclusive r e su l t s .  
then tha t  the portion of the atmosphere above 250 ft. w a s  important fo r  the 
conditions of th i s  experiment regarding wave shape d is tor t ions .  

It follows 

As a follow up t o  the ray path experiments of f igure 8, another experiment 
w a s  performedto investigate the e f f ec t s  of time w i t h  regard t o  atmospheric 
d i s tor t ion  effects.  
airplanes of the same type which were flown at the same a l t i t u d e  and Mach 
number and on the  same nominal f l ight t rack and about 5 seconds apart .  By 
means of a ground microphone array it was possible t o  measure sonic boom 
signatures which travelled along essent ia l ly  the  same ray path from hi@ 
a l t i t ude  t o  the @;round for  a distance of approximately 1 5  miles but at s l i g h t l y  
d i f fe ren t  t imes .  
signature tracings at the bottom of f igure 9. 
d i f fe ren t  wave shapes a re  associated w i t h  measurements at times a few seconds 
apart. 
atmospheric conditions along a given ray  Path may be s igni f icant  even for  such 
a small difference i n  time. 

"his experiment w a s  performed with the aid of two 

One of the r e su l t s  of the experiment i s  i l l u s t r a t e d  by the 
It can be seen t h a t  qu i te  

Such a result suggests t h a t  the Integrated e f f ec t s  of changes i n  the 
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Further experiments r e l a t ing  t o  atmospheric e f f e c t s  on sonic boom 
propagation were performed recent lyby  NASA aad USAF personnel i n  the  Edwards, 
California, area. 
Goodyear a i rship,  Mwlower, as i l l u s t r a t e d  schematically i n  figure 10. For 
some cases as i l l u s t r a t e d  i n  the figure the incident signature was es sen t i a l ly  
undistorted whereas the ground measurements and the re f lec ted  signature 
measurements at the a i r sh ip  showed evidence of d i s tor t ion .  This would suggest 
t h a t  the 2,000 ft. surface layer o f t h e  atmosphere w a s  responsible f o r  all such 
dis tor t ion.  On the other hand some other measurements indicate d i s to r t ion  of 
the incident wave thus indicating tha t  the  portion of t h e  atmosphere above 
2,000 ft. may f o r  some cases be important. 

One of these experiments w a s  performed with the  a id  of the 

None of the above experiments produced evidence of d i rec t  correlat ion 
between signature d is tor t ion  and ident i f iab le  l o c a l  disturbances i n  the 
atmosphere. 
par t icu lar ly  t o  achieve such a correlation. U s e  w a s  made of a la rge  subsonic 
a i r c r a f t  t o  generate wing t i p  vortices i n  the test area i n  such a manner t h a t  
the shock wave t o  be measured would pass through these vortex disturbances 
(See r e f .  5 . ) .  
the microphones i n  the ground array are shown at the  bottom of figure 11. 
part icular  i n t e r e s t  are the data points at  distances from 5,200 t o  5,600 f t .  
along the ground t rack  where markedly la rger  overpressure values were recorded. 
These lat ter measurements were believed t o  have been affected by the presence 
of the  wing t i p  vort ices ,  but  no s ignif icant  changes were noted i n  the signa- 
t u re  shapes. Sane fur ther  analyses and more def in i t ive  experimental studies 
are  planned t o  improve the  understanding of these latter interact ion phenomena. 

The last special  experiment t o  be described was performed 

The resu l t ing  measurements of peak overpressure values from 
O f  

EVALUATION OF AIRCFUWT MOTION IG'FEXTS 

It is  recognized t h a t  measurements of sonic boom signatures on the  ground 
may be affected by var ia t ions i n  the a i r c r a f t  operating conditions as w e l l  as 
by the  atmosphere. An experiment has thus been performed i n  an attempt t o  
evaluate the e f fec ts  on measured signatures of perturbations of the a i r c r a f t  
about i t s  nomina3 f l i g h t  path. I n  order t o  accomplish t h i s  study the test  
setup of f igure 12 was made use of. The a i r c ra f t  w a s  flown a t  a given a l t i t u d e  
and Mach number and on a given heading d i r ec t ly  over and along a 7,000 ft.  long 
array of 40 microphones. The a i r c ra f t  which was specially instrumented t o  
record i t s  motions w a s  flown both i n  steady l eve l  f l i g h t  and i n  "porpoising" 
f l i g h t .  A l l  f l i g h t s  were accomplished at an a l t i t ude  of 35,000 ft.  and a 
Mach nmber of 1.5 with an F-106 a i r c ra f t .  
caused the airplane t o  deviate f romthe nominal f l i gh t  t rack by cycling the  
controls  t o  produce a 0.5 g normal acceleration at the center of gravi ty  of 
the a r c r a f t .  These induced motions have a period of about one second and 
thus the  wave lengths of the motion were about 1,600 ft. fo r  these par t icu lar  
f l i g h t  conditions. 

For the porpoising f l i g h t  the p i l o t  

Ground overpressure measurements fo r  the two types of flights a re  shown 
ii, fig.u:e 13. yL,e data puiL,t6 T ~ ~ -  11 -..-- - L - - A - -  n-2 .*.L w 1 z - e ~  a~,eauy A L L S ~ I , ~ ~  ruld Lvr Lour porpoising 

It can be seen 
flights were obtained from individual microphones located at  various s ta t ions  
along the ground t rack as indicated schematically i n  figure 12. 
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from f igure 13 t ha t  approximately the same ranges of overpressure were measured 
for  each of the f l i g h t  conditions. 
f igure 1 3  suggests the occurrence of cycl ic  var ia t ions of the overpressures 
f o r  both flight conditions. 
this and other f l i g h t  research programs (See re f .  1.). 
note, however, tha t  cyclic var ia t ions t h a t  occur during t h e  steady f l i g h t s  
seem t o  have wave lengths t h a t  vary considerably. 
the porpoising f l i g h t  condition might produce a cycl ic  var ia t ion of overpressure 
at a preferred wave length  on the  ground, t h e  data of several  such f l i g h t s  were 
analyzed i n  such a manner as t o  accentuate t h i s  e f fec t  if it existed. 
r e s u l t s  are  shown i n  f igure 14. 

Furthermore, an inspection of the  data of 

Such cycl ic  var ia t ions have been documented during 
It i s  s igni f icant  t o  

Since it i s  believed t h a t  

These 

The individual histograms of f igure 14  represent var ia t ions i n  the absolute 
values of the  differences i n  the  overpressures measured at pa i r s  of points which 
a re  separated by the distances indicated. If the e f f ec t s  of the s i rplane motion 
were f a i th fu l ly  transmitted t o  the ground, it i s  reasonable t o  expect t h a t  
smaller differences i n  overpressure values would be obtained at some separation 
distances than at others. The sample data of f igure 14 represent separation 
distances varying from 100 f t .  t o  1,600 ft. fo r  comparison. 
be t t e r  define the trend of the var ia t ions of figure 14 the data are presented 
i n  a more convenient form i n  f igure 15.  

I n  order t o  

In  f igure 15 the quantity6;;,,, which i s  the root mean square overpressure 
difference, i s  plot ted as a function of separation distauce for the distances 
for  which data are available.  
generally the  variation of &+as a function of distance f o r  both the  steady 
and porpoising f l i g h t  cases. 
i c a l l y  as a function of separation distance. 
t h a t  perturbations about the f l i g h t  t rack  of the order of those i l l u s t r a t e d  
i n  f igure 12 do not propagate f a i th fu l ly  t o  the  wound from high a l t i t ude .  
It i s  thus believed tha t  the var ia t ions discussed previously i n  t h i s  paper a re  
due mainly t o  atmospheric e f f ec t s  ra ther  than t o  e f fec ts  of a i r c r a f t  motion. 

The curve of f igure 1 5  seems t o  represent 

Both sets of da ta  are seen t o  increase monoton- 
Such a result strongly suggests 

CONCLUDING HEMARKS 

The experience derived from several  f l i g h t  test programs regarding sonic 
boom signature variations has been summarized. Variations were noted t o  occur 
i n  the peak overpressure, the impulse function, the  time duration, and the bow 
r i s e  time. 
portion of the atmosphere below about 2,000 ft. i s  shown t o  be most i n f luen t i a l  
although i n  some cases the higher portions may a l so  be important. 
motions, i n  the form of perturbations about t he  normal f l i g h t  t rack,  are shown 
not t o  contribute s ignif icant ly  t o  observed sonic boom signature var ia t ions.  

Such var ia t ions are noted t o  be induced by the atmosphere. That 

Aircraft  
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Figure 3. -  Effects of instrument f’requency response on sonic boom signature shapes. 
Data are for B-58 aircraft at an aLtlturie of 31,600 ft. and a mach 
number of 1.5. 
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